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Signed into law in January 2002, the No Child Left Behind Act contains
the most comprehensive reforms of the Elementary and Secondary
Education Act since its enactment in 1965. The Act emphasizes the use of
research-supported teaching methods, learning activities, and curriculum
materials in all disciplines, but especially in reading and mathematics,
the two basic subjects in the school curriculum. Indeed, the Act requires
that federal funding go only to those programs that are supported by
evidence from scientific research studies. 

Teachers can use three different types of evidence from scientifically
based research to make curricular and instructional decisions. The
authors of a monograph for the National Institute for Literacy (Stanovich
& Stanovich, 2003) note that “evidence of instructional effectiveness can
come from any of the following sources:

• Demonstrated student achievement in formal testing situations
implemented by the teacher, school district, or state;

• Published findings of research-based evidence that the instructional
methods being used by teachers lead to student achievement; or

• Proof of reason-based practice that converges with a research-based
consensus in the scientific literature. This type of justification of
educational practice becomes important when direct evidence may
be lacking…, but there is a theoretical link to research-based
evidence that can be traced.”

The purpose of this document is to show how the major instructional
and programmatic features of Progress in Mathematics are supported 
by scientifically sound research reviews and individual studies. The
document does so in two ways. First, it identifies the research base 
in mathematics education that supports the generic instructional and
programmatic features of Progress in Mathematics. Second, it identifies
the research base in reading education that further supports these
generic instructional and programmatic features. The many parallels 
in teaching strategies and learning processes between beginning
mathematics and beginning reading are one reason for identifying this
research base in reading. It will be useful to teachers who teach both
mathematics and reading in self-contained classrooms from kindergarten
through grade 6 to learn what these parallels are and how research
findings in elementary reading can supplement research findings in
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Support for Progress in Mathematics:
Highlights from Research Studies
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elementary mathematics. A second reason for identifying the supportive
research base in reading instruction is the status of the body of research
in mathematics education. It is much smaller and newer than the body
of research on reading and, by itself, does not provide sufficient
evidence to guide policy or practice. Moreover, after a comprehensive
review of the studies evaluating the 13 mathematics curricula funded by
the National Science Foundation and six publisher-generated programs
produced during the 1990s, the reviewing committee concluded that no
valid body of studies supports the effectiveness of any of those programs
(National Research Council, 2004).

The Progress in Mathematics series was developed in the 1940s by 
the Sisters, Servants of the Immaculate Heart of Mary who taught 
in the Catholic schools of Philadelphia, Harrisburg, and Scranton. 
As a result, the series is used in many Catholic elementary schools
across the country. It is also used in many more Catholic elementary
schools than its nearest competitor.

It is informative to set Catholic schools in the context of the national
profile of student achievement in mathematics in the elementary
grades. In 2003, results from the Grade 4 Mathematics Assessment in
the National Assessment of Educational Progress (NAEP) were broken
down by type of school, a category that was divided into seven kinds
of schools. As Table 1 shows, grade 4 students in Catholic schools
scored significantly higher than grade 4 students in public schools,
achieving an average scale score of 244 in contrast to an average scale
score of 234 for the public school students. Table 1 also shows that a
significantly higher percentage of the students in Catholic schools
scored at or above the Proficient level compared to students in public
schools, 43% to 31%.  Thus, Progress in Mathematics is used in a
category of schools whose students overall score higher at all
performance levels than do those in public schools.

Progress in Mathematics has been published for more than 60 years by
William H. Sadlier, Inc. The original authors of the program proposed a
number of principles to guide the pedagogy used for teaching
mathematics in the elementary school. Their far-sighted vision of what a
sound elementary mathematics program should contain continues to
guide Progress in Mathematics. Their guiding principles can be articulated
using the letters in the program’s name and are explained in detail here. 
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P = Powerful development of problem-solving skills and strategies

R = Reality-based on what works in the classroom because it is developed by
teachers for teachers 

O = Ongoing review and maintenance of prior knowledge of concepts, skills,
and problem solving

G = Grounded in a dedication to lead students from concrete understanding to
pictorial representation and finally to abstract thought

R = Reaching students wherever they are in their cognitive and mathematical
development, with specific suggestions for reteaching some, reinforcing
learning in all, and enriching and challenging others 

E = Evaluation tools that assess conceptual understanding, mathematical
vocabulary, skill development, and problem solving through varied methods

S = Sequential development of mathematical concepts, skills, processes,
problem solving, and reasoning 

S = Substantial practice of newly acquired concepts and skills through abundant and
varied exercises, problems, and mental math, with strong reliance on students’
explanation of thinking orally and in writing
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Table 1: National/Mathematics Composite/Grade 4/2003
Type of school as categorized by one of seven types (2002 and later): Public, other

private, Catholic, Bureau of Indian Affairs, Department of Defense Education Activity,

Lutheran, Conservative Christian

Percentage of Students At or Above Each Achievement Level
(with Standard Errors in Parentheses)

Average At or Above At or Above
N Scale Score Below Basic Basic Proficient At Advanced

Public 184,325 234 (0.2) 24% (0.3) 76% (0.3) 31% (0.3) 4% (0.1)

Other private ––– ---- (---) ---- (---) ---- (---) ---- (---) ---- (---)

Catholic 2,285 244 (0.8) 12% (0.9) 88% (0.9) 43% (1.2) 5% (0.7)

Bureau of Indian Affairs ––– ---- (---) ---- (---) ---- (---) ---- (---) ---- (---)

Department of Defense 1,088 237 (0.8) 16% (1.3) 84% (1.3) 32% (1.6) 2% (0.7)

Lutheran 555 245 (1.5) 10% (1.7) 90% (1.7) 46% (3.5) 5% (1.1)

Conservative Christian ––– ---- (---) ---- (---) ---- (---) ---- (---) ---- (---)

––– Sample size is insufficient to permit a reliable estimate.

NOTE: The NAEP Mathematics scale ranges from 0 to 500.  Observed differences are not necessarily statistically significant. 

SOURCE: U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics, 

National Assessment of Educational Progress (NAEP): 2003 Mathematics Assessments.
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Explicit and systematic instruction refers to the direct teaching of

mathematical concepts and skills in a clearly defined sequence designed

to grow over the course of the school year and from grade to grade. 

A logically developed progression of concepts and skills ensures that

children are able to learn more and more complex material as they build

on the foundation of previously learned concepts and skills. Direct

teaching of a logical sequence of concepts and skills extends children’s

knowledge systematically in mathematically effective ways. Nothing is

left out or left to chance or random discovery. The benefits of explicit

and systematic instruction are supported by research in mathematics,

reading, and science education. 

How research supports it...
Research Reviews: In a review of high-quality studies in mathematics

education, the National Center to Improve the Tools of Educators found

support for direct teaching and “guided discovery.” It also found support

for selecting and sequencing instructional examples according to principles

of concept acquisition in studies of “effective strategies.” It found no

advantages for “strictly discovery instruction” (Dixon et al, 1998). 

The reviewers also discerned a pattern for effective mathematics lessons in

many of these studies and provided a “general model for effective lessons”:

In Phase I, teachers demonstrate, explain, question, and/or conduct

discussions. Students are actively involved, through answering

questions and/or discussion. 

In Phase II, teachers, individual peers, and/or groups of peers provide

students with substantial help that is gradually reduced. Students

receive feedback on their performance, correctives, additional

explanations, and other forms of assistance.

In Phase III, teachers assess students’ ability to apply knowledge to

taught and/or untaught problems. Students demonstrate their ability to

independently recall and/or generalize and transfer their knowledge.
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1. Explicit and Systematic Instruction

Instructional and Programmatic
Features of Progress in Mathematics
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In his own review of high-quality research in mathematics education, the

Director of the Institute of Education Sciences found that “direct

instruction can help students learn computational skills and understand

math principles.”

We know that children don’t have to discover math principles on their

own…in order to understand mathematical concepts (Whitehurst, 2003).

The review of research on beginning reading instruction, in a monograph

distributed by the U.S. Department of Education as part of the Reading

First initiative (Armbruster & Osborn, 2001), also offers strong support

for explicit instruction. It notes four steps that are basic to explicit

instruction. These four steps, which are essential for successful learning

experiences, can take place in whatever order is appropriate to the topic

and cognitive level of the child. 

Direct Instruction: The teacher helps children become aware of

what they are to learn and how they are to use their new knowledge.

Modeling: The teacher demonstrates or models the thinking process,

using a think-aloud technique.

Guided Practice: The teacher guides the children and assists them

as they learn how and when to apply their new knowledge.

Application: The teacher helps children apply their new knowledge

in extended activities.

Individual Studies: Direct instruction may work and generalize as well

in science education as in reading and mathematics education. In a

study of direct instruction versus exploration in science learning, the

researchers found that third and fourth graders whose teachers

controlled the goals, materials, examples, explanations, and pace of

instruction could design unconfounded experiments and critically

evaluate flawed experiments better than third and fourth graders whose

teachers did no more than suggest a learning objective. 
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We found not only that many more children learned from direct

instruction than from discovery learning, but also that when asked to

make broader, richer scientific judgments, the many children who

learned about experimental design from direct instruction performed as

well as those few children who discovered the method on their own.

These results challenge predictions derived from the presumed

superiority of discovery approaches in teaching young children basic

procedures for early scientific investigations (Klahr & Nigam, 2004).  

Direct and systematic instruction depends on good lesson planning.

Well-organized lessons also affect how new knowledge is constructed.

Carefully structured lesson plans specify such core components as

objectives, mental mathematics, developmental activities, and homework.

All the core components are basic to planning. The lesson plan is a design

uniting them in a logical and coherent way that makes each lesson

consistent, integrated and complete (Panasuk, Stone, & Todd, 2002). 
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Grade K Student Edition page 45 (Clear Models)

Grade 1 Teacher’s Edition pages 9–10 (5-Step Lesson Plan)

Progress in Mathematics responds with…

• A Program Scope and Sequence
that details the systematic growth of the
content from grade level to grade level
(available online)

• A Table of Contents that shows the
careful sequencing of mathematics
content for each grade (not shown)

• Clear models that explicitly teach
new content

• A 5-Step Lesson Plan (in the Teacher’s
Edition) that delivers direct instruction of
mathematical concepts and skills
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One major goal of mathematical learning in the elementary school is to

have children understand and master the concepts and relationships

underlying basic computational procedures. Children’s understanding

may be developed through a three-stage process that goes from

concrete thinking to visual thinking and then to symbol use. In the first

stage, children learn concrete meanings or referents for the central

concepts and relationships in arithmetical computation through hands-

on activities with a variety of manipulatives. Children relate tactile

experiences designed to illustrate new concepts or relationships with

what they already know or understand. 

After acquiring experience-based knowledge of abstract mathematical

concepts and relationships, children learn to understand visual

representations of them. They interpret or construct a variety of formats

for organizing numerical information such as charts, graphs, tables, or

number lines. Visual representations that organize and display the

significant features of abstract mathematical concepts help children

make sense of them. The pictorial stage reinforces the concrete stage

and prepares children for using symbols alone. 

In the third stage, children manipulate the mathematical symbols that

are used to communicate mathematical concepts and relationships

efficiently, without the support of concrete materials or visual aids. They

go beyond concrete and visual thinking to engage in more abstract

thinking—the thinking on which higher levels of mathematics are based.

At each stage, children also practice basic computational procedures.

Mastery in computational skills can promote as well as reflect knowledge

of their underlying structures.

However, teachers need to keep in mind individual differences. The need

for hands-on activities, as well as the time needed for them, depends

upon the age and type of student. 

2. Conceptual Understanding
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Some children need many experiences with manipulatives. English

language learners, especially those in the early stages of English

language acquisition, will benefit from many hands-on activities, possibly

with peer tutoring. Learning-disabled children may need even more time

and emphasis on hands-on activities to build a firm, experience-based,

intuitive understanding of the basic concepts. On the other hand,

children who are not learning disabled will benefit from an early

transition to symbol use to maximize the time needed for developing

abstract thinking. And some students do not need hands-on activities

with manipulatives at all because they can readily think abstractly; they

need more challenging activities from the outset.

In the upper elementary grades, it may be helpful to group very slow

learners and very fast learners separately for many of their mathematics

lessons to ensure that both groups of children are appropriately

challenged by their instructional materials and learning activities.

Teachers can also accommodate individual differences through scaffolded

instruction. In scaffolded instruction, students are given support until they

can apply new skills and strategies independently (Rosenshine & Meister,

1992). When students are first learning a new or difficult task, the teacher

gives them a great deal of assistance. As they begin to demonstrate task

mastery, the teacher gradually decreases assistance in order to make the

students more and more responsible for their own learning.

How research supports it...
Research Reviews: A number of studies have demonstrated that

conceptual understanding can be promoted through a variety of

pedagogical methods and practice on a wide range of problem types.

A meta-analysis of studies on research-based instructional strategies for

increasing student achievement found direct instruction the most

effective way to help children acquire conceptual knowledge.

The best way to teach organizing ideas—concepts, generalizations,

and principles—appears to be to present these constructs in a rather

direct fashion and then have students apply these concepts,

generalizations, and principles to new situations (Marzano, 1998).
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A review of the relationship between conceptual and procedural knowledge

found that conceptual knowledge is related to computational skill.

Children’s understanding of mathematical concepts is positively correlated

with their ability to execute procedures. In some tasks, conceptual

understanding precedes procedural competence; in other tasks, the order

is reversed. The general lesson seems to be that the structure of the

environment has a large impact on the developmental relations between

conceptual and procedural knowledge (Rittle-Johnson & Siegler, 1998).

A review of the effectiveness of manipulatives in mathematics and

science found that their use might improve learning in some educational

contexts and for some types of students. 

Manipulatives may be a helpful tool for some student populations—

especially elementary and middle school students who may have difficulty

with abstract concepts in math and science content areas (for instance,

students with certain learning disabilities) (Ruzic & O’Connell, 2001).

Reviews of the research on the benefits of grouping children for

mathematics instruction on the basis of their level of achievement has

consistently found that high-achieving students learn more when they are

given more challenging content or placed in accelerated courses (Kulik,

1992; Loveless, 1998).  Indeed, it is considered a matter of equity by some

educators and researchers (Benbow & Stanley, 1996).

When students are ability grouped into separate classes and given an

identical curriculum, there is no appreciable effect on achievement.

But when the curriculum is adjusted to correspond to ability level, it

appears that student achievement is boosted, especially for high ability

students receiving an accelerated curriculum. ...The elementary school

practices of both within-class and cross-grade ability grouping are

supported by research (Loveless, 1998).  

Individual Studies: A study of the relation between conceptual

knowledge and procedural knowledge noted the importance of

inculcating both types of knowledge in the classroom.

…Improved procedural knowledge can lead to improved conceptual

knowledge, as well as the reverse (Rittle-Johnson, Siegler, & Alibali, 2001).



• Concrete presentations that form the

first stage of a 3-stage process designed to

provide a strong procedural base and help

children move from concrete to visual

thinking to symbol use

• Visual presentations and symbolic

presentations form the second and

third stages of the process
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Progress in Mathematics responds with…

Grade 1 Student Edition page 51

(Concrete Presentation)

Grade 1 Student Edition pages 53, 62

(Visual and Symbolic Presentations)
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Computational fluency in mathematics is achieved through the

development of number sense and extensive practice in using efficient

and accurate methods for computing. Automaticity in computing

efficiently and accurately frees mental energy for problem solving in the

same way that automaticity in decoding words, playing scales on a

musical instrument, or executing basic movements in a physical sport

correctly and quickly advances interpretation and helps improve

performance. Moreover, fluency in decoding enables children to read

word problems in mathematics carefully, attending fully to the meaning

of the text in order to understand the problem itself. 

Just as elementary grade students should learn to identify most common

and regularly spelled words accurately and quickly without relying on

context, so should they also learn how to perform the basic arithmetical

operations accurately without a calculator and using the standard

algorithms. Most importantly, students should understand why and how the

basic algorithms of arithmetic work. This understanding is necessary to

support further learning in mathematics. One of the best ways to ensure

that students gain this understanding is to defer frequent calculator usage

until after they understand the standard algorithms and are fluent with them. 

Standard algorithms were gradually developed many centuries ago for

their efficiency, accuracy, and generality—that is, they work in all

situations. They are theoretically and practically important methods for

computing. They contain in their very structure all the basic properties of

the base-ten place-value system, set forth in as efficient a manner as

possible. An understanding of how and why they work, as well as the

ability to use them fluently, provides the foundation for mathematical

competence. As children acquire knowledge of the underlying structure of

a particular operation and explore different ways to perform it, they

should also learn how to use the standard algorithm for the operation.

After they learn a standard algorithm for an operation, whatever they then

choose to use routinely should be judged on the basis of efficiency and

accuracy. Children should be able to explain whatever method they use

and see the usefulness of methods that are efficient, accurate, and general. 

3. Fluency in Numerical Operations
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How research supports it...
Research Reviews: A 15-member group of mathematicians,

appointed by the Mathematical Association of America to respond to a

set of questions about algorithms and algorithmic thinking posed by the

National Council of Teachers of Mathematics Commission on the Future

of the Standards, stated that “standard mathematical definitions and

algorithms serve as a vehicle of human communication” and that they

should be taught to all children (Ross, 1997).  

The starting point for the development of children’s creativity and skills

should be established concepts and algorithms. …Success in

mathematics needs to be grounded in well-learned algorithms as well

as understanding of the concepts (Ross, 1998).

Notices of the American Mathematical Society states that “all the algorithms

of arithmetic are preparatory for algebra. …The division algorithm is also

significant for later understanding of real numbers” (American Mathematical

Society Association Resource Group for the NCTM Standards, 1998).  

Children in almost all of the highest scoring countries in the

Third International Mathematics and Science Survey (TIMSS) do not

use calculators as part of mathematics instruction before grade 6.

A meta-analysis of studies on calculator use in this country also

recommends against its use with young children. 

Because limited research has been conducted featuring the early

grades, calculators should be restricted to experimentation and

concept development activities (Ellington, 2004). 

Research in reading shows that the ability to decode words fluently is

highly related to successful reading comprehension. 

Because the ability to obtain meaning from print depends so strongly

on the development of word recognition accuracy and reading

fluency, both should be regularly assessed in the classroom…(Snow,

Burns, & Griffin, 1998).

Individual Studies: A framework for understanding biological and cultural

influences on children’s cognitive and academic development shows how

automatic execution of arithmetical operations is related to problem solving. 
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Once procedures are automatized, they require little conscious effort to

use, which, in turn, frees attentional and working memory resources for

use on other, more important features of the problem (Geary, 1995).

In a study, two mathematicians explain how students learn concepts that

are crucial in core applications of mathematics today when they are

taught to understand and use the long division algorithm. An

understanding of this algorithm prepares them for the next level of

mathematical learning.  This level includes, above all, the structure of 

real numbers and what convergence of series and sequences means. 

It also includes students’ ability to construct correct and efficient

algorithms on their own, an ability that is best developed by extensive

study of examples of sophisticated and powerful algorithms such as the

standard long-division algorithm:

…the long-division algorithm is an essential tool for understanding

what a real number is (Klein & Milgram, 2000).

An analysis of the fourth grade results in mathematics on the Third

International Mathematics and Science Study finds that use of calculators in

U.S. fourth grade mathematics classes is about twice the international average. 

U.S. fourth graders use calculators and computers in mathematics

class more frequently than do students in most other TIMSS countries.

...in six of the seven nations that outscore the U.S. in mathematics,

teachers of 85% or more of the students report that students never

[or hardly ever] use calculators in class (National Center for

Education Statistics, 2000).

A study of calculator use and NAEP math assessment data found that

fourth graders who took the 1996 NAEP math assessment and reported

using calculators every day scored the lowest on the math test. A similar

correlation was noted in the TIMSS data.

On [NAEP and TIMSS] tests, students are asked how often they use

calculators in class. And on both tests, calculator use is correlated with

lower math scores (Loveless, 2000).

Research in reading also shows the value of fluency. Research shows

that children who are dependent on context for word identification

are slower, poorer readers. Fluent readers can pay more attention to



what the text means because they do not have to concentrate on

decoding the words.

Slow, capacity-draining word-recognition processes require cognitive

resources that should be allocated to higher-level processes of text

integration and comprehension. Thus, reading for meaning is hindered,

unrewarding reading experiences multiply, and practice is avoided or

merely tolerated without real cognitive involvement (Stanovich, 1986).

Automaticity is vital in education because it allows us to become more

skillful in mental tasks (Willingham, 2004).
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Progress in Mathematics responds with…
• Step-by-step algorithms that allow

children to quickly and accurately perform

mathematical operations, without relying

on the use of calculators

• Ample Practice of strategies and facts in

order to generate fluency

Grade 5 Student Edition page 48 (Step-by-Step) Grade 1 Student Edition page 81 (Practice)
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Problem solving in a mathematics class is an activity in which students

both develop and apply their reading skills, conceptual knowledge, and

computational skills to solve a mathematical problem in which the

answer is not evident. Such problems are not repetitive exercises of a

skill just taught in a lesson. They may require use of previously learned

knowledge and skills, recently learned knowledge and skills, and/or the

simultaneous application of multiple skills and concepts. In solving

problems, students analyze the information given in a problem, consider

the range of strategies they know for solving the problem, decide on the

strategies that best address the problem as they have analyzed it, or

develop new strategies for solving the problem. Students acquire

flexibility in using the strategies they know or in developing new

strategies through practice in solving problems in a variety of formats

and contexts and at increasing levels of complexity. Graphic and

semantic organizers as well as mental imagery can be helpful tools to

examine and represent relationships in a problem. Successful problem

solvers have the reading skills, conceptual knowledge, and

computational fluency required for solving the problems their teachers

or textbooks present to them. 

4. Problem Solving



How research supports it...
Research Reviews: Skill in spatial representation and reading as well

as judgment in using mathematical knowledge are emphasized in a

reference to the research on problem solving.

Strong mathematical problem solving appears to be associated with,

among others, the ability to spatially represent mathematical relations,

the ability to translate word problems into appropriate equations, and

an understanding of how and when to use mathematical equations

(Geary, 1995).

A review of research studies on problem solving in science and

mathematics education stresses the teacher’s role as well as

background knowledge.

Our reading of a representative group of studies emphasizing the

development of reasoning skills through inquiry-based problem solving

suggests that: (1) students always need teacher guidance in solving

problems, and (2) reasoning ability depends as much on content

knowledge and its manipulation as on the students’ presumed level of

intellectual development…(Gross & Stotsky, 2000).

A review of the use of graphic organizers in reading and across the other

curriculum areas finds “solid evidence for the effectiveness of graphic

organizers in facilitating learning” when students are explicitly instructed

in how to use them (Hall & Strangman, 2001).

Individual Studies: A study of an “explicit strategy method” for

teaching fourth graders how to translate a word problem into

mathematical form suggests the effectiveness of direct instruction in

problem solving. 
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In order to translate a word problem into mathematical form, this study

supports the position that a program constructed to teach prerequisite

skills in a sequential manner and, more importantly, explicitly model

and teach each step in the translation process is significantly more

effective than “guided discovery” methods, especially for lower

performing students (Darch, Carnine, & Gersten, 1984).

A study of the relation between conceptual knowledge and procedural

knowledge suggests the importance of making sure children visualize a

problem correctly. 

…supporting the correct representation of problems is an effective

tool for improving problem-solving knowledge (Rittle-Johnson,

Siegler, & Alibali, 2001).
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Grade 1 Student Edition page 283 (Step-by-Step) Grade 5 Student Edition page 58 (Analysis and Review)

Progress in Mathematics responds with…

• Step-by-step strategy development in

which each step of the problem-solving

process is clearly modeled

• Opportunities for analysis and review in

which children analyze information and

apply previously learned strategies to solving

problems with different number types



2222

5
. 

V
o

c
a

b
u

la
ry

 D
e

v
e

lo
p

m
e

n
t

Vocabulary development is one of the basic building blocks in learning

and promoting math literacy. Understanding the exact meaning of

subject-specific words and using them correctly is crucial to

mathematical comprehension. Children must learn the words that they

are likely to see—and hear—again and again in their mathematics

lessons—the words that express basic mathematical relationships, terms,

and shapes. Such relational phrases as “bigger than,” “smaller than,”

“equal to,” “less than,” and “fewer than”; such terms as “fraction,” “right

angle,” “multiplication,” “addition,” and “subtraction”; and such shapes

as “triangle,” “quadrilateral,” “cone,” “cylinder,” “polygon,” and

“hexagon” need to be defined, exemplified, and used precisely in

mathematical contexts.

Although a list of such words or phrases in elementary arithmetic is not

large, and children seem to learn many of them through daily discussion

and repeated exposure in their textbooks, children often misunderstand

them at a basic level. Teachers should give students exact definitions of

mathematical terms and shapes when they are learning them, expect

these words to be used correctly, and give students practice in the

correct use of relational phrases. 

Instruction in a mathematics vocabulary might profitably be

differentiated and separated from instruction in a general reading

vocabulary. As with scientific terms, mathematical terms have a specific

and consistent meaning uninfluenced by context. This is not at all the

case with the words children encounter in literary reading or in their

everyday experiences. For the common prefixes, suffixes, and word

roots that appear in a large number of related words in mathematics

and science (for example, the prefix in millisecond, millimeter, and

millennium), structural analysis can also be a productive approach.

Children’s understanding of their basic mathematical vocabulary should

be regularly monitored.

5. Vocabulary Development



The crucial concept of place value that underlies all of arithmetic and

most of algebra can also be developed in counting games in beginning

arithmetic if children are taught to read numbers aloud in a way that

treats zero as a number to be read, not as a place-holder, thus saying all

places: for example, reading 205 aloud as “two one-hundreds plus no, 

or zero, tens plus five ones.” This kind of vocabulary practice in

beginning arithmetic may also help children avoid confusion when they

hear a number read aloud in English in the common way—the way they

are taught to read numbers aloud in reading class (for example, reading 

207 aloud as “two hundred and seven”)—if their teachers point out the

difference between the common way of reading numbers aloud in

English and a mathematically precise way of reading them aloud.

For children who are just learning the English language, mathematics

with its wide use of manipulatives, illustrations, and graphics is the

optimal subject for conveying language and content simultaneously.

Teaching a mathematical vocabulary to these students, especially

relational phrases, is a crucial first step in developing the students’ ability

to read and understand word problems later. It may be necessary to give

English language learners more than the usual amount of direct

instruction and practice on explicit vocabulary development.

How research supports it...
Research Reviews: The authors of a comprehensive review of the

research on vocabulary instruction offer a number of recommendations to

teachers regarding vocabulary instruction.  Among them are the following:

(1) Include instruction in both specific-word and transferable and

generalizable strategies.  (2) Provide struggling readers a systematic

and sustained program of vocabulary instruction that teaches them

more important words and efficient strategies. And (3) select suitable

strategies from a range of empirically validated instructional

procedures that are compatible with your instructional objectives

(Bauman, Kame’enui, & Ash, 2003).

Another review of research on vocabulary instruction highlights the

effects of direct instruction in the content areas.
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Direct instruction on words that are critical to new content produces

the most powerful learning. The effects of vocabulary instruction are

even more powerful when the words selected are those that students

most likely will encounter when they learn new content (Marzano,

Pickering, & Pollock , 2001).

Individual Studies: Young Asian students’ higher mathematical

learning may be related to the regularity of spoken number words in

East Asian languages. For example, Korean elementary school children

aged 6, 7, and 8 carry out 2- and 3-digit addition and subtraction

considerably more accurately than do their U.S. age-mates.

Korean children do not have to find the tens and the ones for a given

2-digit number; they are already given in the Korean number words.

This example underscores the special difficulties imposed on English-

speaking children and suggests that it might be helpful for them to

use “tens words”—English versions of Korean words—to support their

multiunit thinking (Fuson & Kwon, 1992).

A student who can read a key word in mathematics correctly may not

necessarily understand what the word means mathematically. A reading

researcher offers three principles for effective vocabulary instruction: 

Principle 1: give both context and definitions; Principle 2: encourage

‘deep’ processing; and Principle 3: give multiple exposures (Stahl, 1986).



Grade 2 Student Edition page 117
(Math Words, Talk It Over)
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2255Grade 1 Student Edition page 366 (Do You Remember?) Grade 1 Teacher’s Edition page 1B (Math Vocabulary)

Progress in Mathematics responds with…

• Math Words that teach children the

language of mathematics and how to

communicate mathematically

• Talk It Over activities that connect

children’s understanding of math

concepts with math vocabulary

• Do You Remember? exercises that

review previously learned math vocabulary

• Math Vocabulary activities (in the

Teacher’s Edition) that engage children

in discussions using math vocabulary

• Write About It activities that

encourage children to use math

vocabulary in their writing (not shown)

• An On-line Grade Level Glossary

that illustrates and defines

program math vocabulary (not shown)
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Practice and review are fundamental to mathematical learning. They are

as necessary in mathematics as they are in music and sports for learning

basic skills or procedures, for mastering them, and for making them

automatic. Regular practice leads not only to greater fluency in the use

of a skill but also to better retention of the skill. Indeed, practice beyond

the point of mastery is recommended for a new skill to become long-

lasting. There are, however, different purposes for practice. 

• At first, practice should be guided to ensure that students are

practicing correctly what they have just learned. 

• Practice should then be differentiated to provide a challenge to

students who learn quickly or are at advanced levels of skill

development, and to provide reinforcement to students who learn at

a slower pace or demonstrate weaknesses in the new skill.

• Practice should then be undertaken independently. 

• Finally, practice should be incorporated in reviews that are intended

to sustain fluency in skills that have been mastered. Sustained

practice, or ongoing review, may mean using newly learned

computational skills to solve increasingly more complex math

problems. It may also mean doing short daily exercises in the form of

mental math or taking regular quizzes that incorporate material

learned earlier in the year. 

How research supports it...
Research Reviews: In a discussion of the role of basic skills in

mathematical learning, a large number of studies are cited as support for

the importance of practice for skill retention.

…The argument that drill and practice and the development of basic

cognitive skills, such as fact retrieval, are unnecessary and unwanted in

mathematics education fails to appreciate the importance of basic skills

for mathematical development (Geary, 1994).

6. Practice and Review 
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Individual Studies: Many individual studies emphasize the value

of practice.

That students will only remember what they have extensively

practiced—and that they will only remember for the long term that

which they have practiced in a sustained way over many years—

are realities that can’t be bypassed (Willingham, 2004).

Procedural learning requires extensive practice on the whole range 

of problems on which the procedure might eventually be used 

(Geary, 1995).



Grade 2 Student Edition page 67 (Guided Practice) Grade 5 Student Edition page 51 (Independent Practice)

Progress in Mathematics responds with…
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• Guided practice that provides

instructional support so children can

transition to independent practice

• An abundance of independent practice

opportunities allows children to achieve

mastery of new skills as they work on

their own

• Do You Remember? exercises that

provide spiral or mixed review of

previously learned skills

• Cumulative Review tests that review

previous chapter materials

• Lesson Readiness activities (in the

Teacher’s Edition) that review skills and

help sustain fluency

• Mental Math and Problem of the Day

exercises that provide daily maintenance
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2299Grade 1 Teacher’s Edition pages 257– 258

Grade 3 Student Edition page 131 (Cumulative Review)Grade 1 Student Edition page 570 (Do You Remember?)
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A comprehensive review of the current state of assessment theory,

knowledge, and practice by the Center for Education sets forth the three

broad purposes of assessment in the following order: to assist learning,

to measure individual achievement, and to evaluate instructional

programs. Assessment should be an integral part of mathematics

instruction. It can guide instruction as well as inform students of their

progress and achievement in mathematical learning. Assessments can

take the form of quizzes or other short informal tests, formal tests,

teacher questioning and observations, performance tasks, and portfolios

showing collections of work samples. Formative or ongoing classroom

assessments provide information on individual progress in mathematical

learning, helping teachers to make needed adjustments in instruction.

Summative assessments provide information on student achievement in

relation to external standards or benchmarks. 

How research supports it...
Research Reviews: A review of advances in the cognitive sciences and

measurement by the Center for Education recommends:

...an increased emphasis on classroom formative assessment designed

to assist learning… (Center for Education, 2001).

A collection of research-based essays on learning notes two key

principles of assessment.

The key principles of assessment are that they should provide

opportunities for feedback and revision and that what is assessed must be

congruent with one’s learning goals (Bransford, Brown, & Cocking, 2000).

A review of high-quality studies in mathematics education by the

Director of the Institute of Education Sciences highlights the value of

frequent assessments.

We know that at the classroom level, frequent assessment is useful,

particularly when teachers are given help on what they should do for

children who aren’t performing well (Whitehurst, 2003).

7. Formative and Summative  Assessments
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3311Grade K Student Edition page 97 Grade 1 Student Edition page 577

Progress in Mathematics responds with…

• Formative or ongoing classroom assessments that continuously provide information

about children’s abilities so teachers can adjust instruction. Formative assessments include

Diagnostic Pretest, Check Your Progress, and Cumulative Review

• Summative assessments that provide information about the extent to which instructional

goals have been met. Summative assessments include Chapter Test, Performance Assessment,

Student Test Booklet, and Portfolios

• Reteaching suggestions (in the Teacher’s Edition) for those children needing extra support

Individual Studies: Several researchers note that formal standards-

based assessments in mathematics should include enough high-level

content to assess the full range of student achievement adequately. 

Much depends on the specificity and difficulty level of the standards

themselves at each grade level assessed, as well as the design of the

assessments and related reporting mechanisms. Tests that emphasize

low-level content may not stimulate significant overall student

improvement and may even mask a lack of high-level performance

(Clopton, Bishop, & Klein, 2000).
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• Field Tested  •  Research Based  •  Standards Aligned

TM

, K– 6

Proven elements of current

research are integrated with a

successful traditional teaching

approach in a comprehensive,

self-contained program that

supports today’s standards.

Progress in Mathematics

promotes an excitement 

for learning and encourages

growth in mathematics. 
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